#include <iostream>
#include <stdlib.h>
#include <iomanip>
{
public:
: m_Method(m)
{}
void
{
using sitk::operator<<;
std::ios state(NULL);
state.copyfmt(std::cout);
std::cout << std::fixed << std::setfill(' ') << std::setprecision(5);
if (m_Method.GetOptimizerIteration() == 0)
{
std::cout << "\tLevel: " << std::setw(3) << m_Method.GetCurrentLevel() << std::endl;
std::cout << "\tScales: " << m_Method.GetOptimizerScales() << std::endl;
}
std::cout << '#' << m_Method.GetOptimizerIteration() << std::endl;
std::cout << "\tMetric Value: " << m_Method.GetMetricValue() << std::endl;
std::cout << "\tLearning Rate: " << m_Method.GetOptimizerLearningRate() << std::endl;
if (m_Method.GetOptimizerConvergenceValue() != std::numeric_limits<double>::max())
{
std::cout << "\tConvergence Value: " << std::scientific << m_Method.GetOptimizerConvergenceValue() << std::endl;
}
std::cout.copyfmt(state);
}
private:
};
{
public:
: m_Method(m)
{}
void
{
using sitk::operator<<;
std::ios state(NULL);
state.copyfmt(std::cout);
std::cout << std::fixed << std::setfill(' ') << std::setprecision(5);
std::cout << "\tStop Condition: " << m_Method.GetOptimizerStopConditionDescription() << std::endl;
std::cout << "============= Resolution Change =============" << std::endl;
std::cout.copyfmt(state);
}
private:
};
int
main(int argc, char * argv[])
{
if (argc < 4)
{
std::cerr << "Usage: " << argv[0] << " <fixedImageFilter> <movingImageFile> <outputTransformFile>" << std::endl;
return 1;
}
{
std::vector<unsigned int> shrinkFactors = { 3, 2, 1 };
std::vector<double> smoothingSigmas = { 2.0, 1.0, 1.0 };
}
{
double learningRate = 1.0;
unsigned int numberOfIterations = 100;
double convergenceMinimumValue = 1
e-6;
unsigned int convergenceWindowSize = 10;
learningRate, numberOfIterations, convergenceMinimumValue, convergenceWindowSize, estimateLearningRate);
}
IterationUpdate cmd(R);
MultiResolutionIterationUpdate cmd2(R);
std::cout << "-------" << std::endl;
std::cout << outTx1.
ToString() << std::endl;
const double varianceForUpdateField = 0.0;
const double varianceForTotalField = 1.5;
displacementTx.SetSmoothingGaussianOnUpdate(varianceForUpdateField, varianceForTotalField);
{
std::vector<unsigned int> shrinkFactors = { 3, 2, 1 };
std::vector<double> smoothingSigmas = { 2.0, 1.0, 1.0 };
}
{
double learningRate = 1.0;
unsigned int numberOfIterations = 300;
double convergenceMinimumValue = 1e-6;
unsigned int convergenceWindowSize = 10;
learningRate, numberOfIterations, convergenceMinimumValue, convergenceWindowSize, estimateLearningRate);
}
std::cout << "-------" << std::endl;
std::cout << displacementTx.
ToString() << std::endl;
return 0;
}