SimpleITK  1.0.1
Classes | Public Types | Public Member Functions | Protected Member Functions | Private Types | Private Attributes | Friends | List of all members
itk::simple::ImageRegistrationMethod Class Reference

An interface method to the modular ITKv4 registration framework. More...

#include <sitkImageRegistrationMethod.h>

+ Inheritance diagram for itk::simple::ImageRegistrationMethod:
+ Collaboration diagram for itk::simple::ImageRegistrationMethod:

Classes

struct  EvaluateMemberFunctionAddressor
 

Public Types

enum  EstimateLearningRateType {
  Never,
  Once,
  EachIteration
}
 
enum  MetricSamplingStrategyType {
  NONE,
  REGULAR,
  RANDOM
}
 
typedef ImageRegistrationMethod Self
 
typedef ProcessObject Superclass
 
- Public Types inherited from itk::simple::ProcessObject
typedef ProcessObject Self
 

Public Member Functions

Transform Execute (const Image &fixed, const Image &moving)
 Optimize the configured registration problem. More...
 
unsigned int GetCurrentLevel () const
 
double GetMetricValue () const
 
std::string GetName () const
 
double GetOptimizerConvergenceValue () const
 
unsigned int GetOptimizerIteration () const
 
double GetOptimizerLearningRate () const
 
std::vector< double > GetOptimizerPosition () const
 
std::vector< double > GetOptimizerScales () const
 Get the OptimizerScales. More...
 
std::string GetOptimizerStopConditionDescription () const
 
 ImageRegistrationMethod ()
 
double MetricEvaluate (const Image &fixed, const Image &moving)
 Get the value of the metric given the state of the method. More...
 
SelfSetMetricAsANTSNeighborhoodCorrelation (unsigned int radius)
 Use normalized cross correlation using a small neighborhood for each voxel between two images, with speed optimizations for dense registration. More...
 
SelfSetMetricAsCorrelation ()
 Use negative normalized cross correlation image metric. More...
 
SelfSetMetricAsDemons (double intensityDifferenceThreshold=0.001)
 Use demons image metric. More...
 
SelfSetMetricAsJointHistogramMutualInformation (unsigned int numberOfHistogramBins=20, double varianceForJointPDFSmoothing=1.5)
 Use mutual information between two images. More...
 
SelfSetMetricAsMattesMutualInformation (unsigned int numberOfHistogramBins=50)
 Use the mutual information between two images to be registered using the method of Mattes et al. More...
 
SelfSetMetricAsMeanSquares ()
 Use negative means squares image metric. More...
 
SelfSetMetricFixedMask (const Image &binaryMask)
 Set an image mask in order to restrict the sampled points for the metric. More...
 
SelfSetMetricMovingMask (const Image &binaryMask)
 Set an image mask in order to restrict the sampled points for the metric in the moving image space. More...
 
SelfSetMetricSamplingStrategy (MetricSamplingStrategyType strategy)
 Set sampling strategy for sample generation. More...
 
SelfSetOptimizerAsAmoeba (double simplexDelta, unsigned int numberOfIterations, double parametersConvergenceTolerance=1e-8, double functionConvergenceTolerance=1e-4, bool withRestarts=false)
 Set optimizer to Nelder-Mead downhill simplex algorithm. More...
 
SelfSetOptimizerAsConjugateGradientLineSearch (double learningRate, unsigned int numberOfIterations, double convergenceMinimumValue=1e-6, unsigned int convergenceWindowSize=10, double lineSearchLowerLimit=0, double lineSearchUpperLimit=5.0, double lineSearchEpsilon=0.01, unsigned int lineSearchMaximumIterations=20, EstimateLearningRateType estimateLearningRate=Once, double maximumStepSizeInPhysicalUnits=0.0)
 Conjugate gradient descent optimizer with a golden section line search for nonlinear optimization. More...
 
SelfSetOptimizerAsExhaustive (const std::vector< unsigned int > &numberOfSteps, double stepLength=1.0)
 Set the optimizer to sample the metric at regular steps. More...
 
SelfSetOptimizerAsGradientDescent (double learningRate, unsigned int numberOfIterations, double convergenceMinimumValue=1e-6, unsigned int convergenceWindowSize=10, EstimateLearningRateType estimateLearningRate=Once, double maximumStepSizeInPhysicalUnits=0.0)
 Gradient descent optimizer. More...
 
SelfSetOptimizerAsGradientDescentLineSearch (double learningRate, unsigned int numberOfIterations, double convergenceMinimumValue=1e-6, unsigned int convergenceWindowSize=10, double lineSearchLowerLimit=0, double lineSearchUpperLimit=5.0, double lineSearchEpsilon=0.01, unsigned int lineSearchMaximumIterations=20, EstimateLearningRateType estimateLearningRate=Once, double maximumStepSizeInPhysicalUnits=0.0)
 Gradient descent optimizer with a golden section line search. More...
 
SelfSetOptimizerAsLBFGSB (double gradientConvergenceTolerance=1e-5, unsigned int numberOfIterations=500, unsigned int maximumNumberOfCorrections=5, unsigned int maximumNumberOfFunctionEvaluations=2000, double costFunctionConvergenceFactor=1e+7, double lowerBound=std::numeric_limits< double >::min(), double upperBound=std::numeric_limits< double >::max(), bool trace=false)
 Limited memory Broyden Fletcher Goldfarb Shannon minimization with simple bounds. More...
 
SelfSetOptimizerAsOnePlusOneEvolutionary (unsigned int numberOfIterations=100, double epsilon=1.5e-4, double initialRadius=1.01, double growthFactor=-1.0, double shrinkFactor=-1.0, unsigned int seed=sitkWallClock)
 1+1 evolutionary optimizer strategy. More...
 
SelfSetOptimizerAsPowell (unsigned int numberOfIterations=100, unsigned int maximumLineIterations=100, double stepLength=1, double stepTolerance=1e-6, double valueTolerance=1e-6)
 Powell optimization using Brent line search. More...
 
SelfSetOptimizerAsRegularStepGradientDescent (double learningRate, double minStep, unsigned int numberOfIterations, double relaxationFactor=0.5, double gradientMagnitudeTolerance=1e-4, EstimateLearningRateType estimateLearningRate=Never, double maximumStepSizeInPhysicalUnits=0.0)
 Regular Step Gradient descent optimizer. More...
 
SelfSetOptimizerScales (const std::vector< double > &scales)
 Manually set per parameter weighting for the transform parameters. More...
 
SelfSetOptimizerScalesFromIndexShift (unsigned int centralRegionRadius=5, double smallParameterVariation=0.01)
 Estimate scales from maximum voxel shift in index space cause by parameter change. More...
 
SelfSetOptimizerScalesFromJacobian (unsigned int centralRegionRadius=5)
 Estimate scales from Jacobian norms. More...
 
SelfSetOptimizerScalesFromPhysicalShift (unsigned int centralRegionRadius=5, double smallParameterVariation=0.01)
 Estimating scales of transform parameters a step sizes, from the maximum voxel shift in physical space caused by a parameter change. More...
 
SelfSetShrinkFactorsPerLevel (const std::vector< unsigned int > &shrinkFactors)
 Set the shrink factors for each level where each level has the same shrink factor for each dimension. More...
 
SelfSetSmoothingSigmasPerLevel (const std::vector< double > &smoothingSigmas)
 Set the sigmas of Gaussian used for smoothing at each level. More...
 
std::string ToString () const
 Print the information about the object to a string. More...
 
virtual ~ImageRegistrationMethod ()
 
InterpolatorEnum GetInterpolator ()
 Set and get the interpolator to use. More...
 
SelfSetInterpolator (InterpolatorEnum Interpolator)
 Set and get the interpolator to use. More...
 
SelfSetInitialTransform (const Transform &transform)
 Set the initial transform and parameters to optimize. More...
 
SelfSetInitialTransform (Transform &transform, bool inPlace=true)
 Set the initial transform and parameters to optimize. More...
 
Transform GetInitialTransform ()
 Set the initial transform and parameters to optimize. More...
 
bool GetInitialTransformInPlace () const
 Set the initial transform and parameters to optimize. More...
 
SelfSetMovingInitialTransform (const Transform &transform)
 Set a fixed transform component towards moving domain. More...
 
Transform GetMovingInitialTransform () const
 Set a fixed transform component towards moving domain. More...
 
SelfSetFixedInitialTransform (const Transform &transform)
 Set transform mapping to the fixed domain. More...
 
Transform GetFixedInitialTransform () const
 Set transform mapping to the fixed domain. More...
 
SelfSetVirtualDomain (const std::vector< uint32_t > &virtualSize, const std::vector< double > &virtualOrigin, const std::vector< double > &virtualSpacing, const std::vector< double > &virtualDirection)
 Set the virtual domain used for sampling. More...
 
SelfSetVirtualDomainFromImage (const Image &virtualImage)
 Set the virtual domain used for sampling. More...
 
SelfSetOptimizerWeights (const std::vector< double > &weights)
 A per parameter weighting array for the optimizer. More...
 
std::vector< double > GetOptimizerWeights () const
 A per parameter weighting array for the optimizer. More...
 
SelfSetMetricSamplingPercentage (double percentage, unsigned int seed=sitkWallClock)
 Set percentage of pixels sampled for metric evaluation. More...
 
SelfSetMetricSamplingPercentagePerLevel (const std::vector< double > &percentage, unsigned int seed=sitkWallClock)
 Set percentage of pixels sampled for metric evaluation. More...
 
SelfSetMetricUseFixedImageGradientFilter (bool)
 Enable image gradient computation by a filter. More...
 
SelfMetricUseFixedImageGradientFilterOn ()
 Enable image gradient computation by a filter. More...
 
SelfMetricUseFixedImageGradientFilterOff ()
 Enable image gradient computation by a filter. More...
 
SelfSetMetricUseMovingImageGradientFilter (bool)
 Enable image gradient computation by a filter. More...
 
SelfMetricUseMovingImageGradientFilterOn ()
 Enable image gradient computation by a filter. More...
 
SelfMetricUseMovingImageGradientFilterOff ()
 Enable image gradient computation by a filter. More...
 
SelfSetSmoothingSigmasAreSpecifiedInPhysicalUnits (bool arg)
 Enable the smoothing sigmas for each level in physical units (default) or in terms of voxels. More...
 
SelfSmoothingSigmasAreSpecifiedInPhysicalUnitsOn ()
 Enable the smoothing sigmas for each level in physical units (default) or in terms of voxels. More...
 
SelfSmoothingSigmasAreSpecifiedInPhysicalUnitsOff ()
 Enable the smoothing sigmas for each level in physical units (default) or in terms of voxels. More...
 
- Public Member Functions inherited from itk::simple::ProcessObject
virtual void Abort ()
 
virtual int AddCommand (itk::simple::EventEnum event, itk::simple::Command &cmd)
 Add a Command Object to observer the event. More...
 
virtual float GetProgress () const
 An Active Measurement of the progress of execution. More...
 
virtual bool HasCommand (itk::simple::EventEnum event) const
 Query of this object has any registered commands for event. More...
 
 ProcessObject ()
 
virtual void RemoveAllCommands ()
 Remove all registered commands. More...
 
virtual ~ProcessObject ()
 
virtual void DebugOn ()
 
virtual void DebugOff ()
 
virtual bool GetDebug () const
 
virtual void SetDebug (bool debugFlag)
 
virtual void SetNumberOfThreads (unsigned int n)
 
virtual unsigned int GetNumberOfThreads () const
 

Protected Member Functions

virtual unsigned long AddITKObserver (const itk::EventObject &, itk::Command *)
 
template<class TImageType >
itk::ImageToImageMetricv4< TImageType, TImageType, TImageType, double, itk::DefaultImageToImageMetricTraitsv4< TImageType, TImageType, TImageType, double > > * CreateMetric ()
 
itk::ObjectToObjectOptimizerBaseTemplate< double > * CreateOptimizer (unsigned int numberOfTransformParameters)
 
template<typename TMetric >
itk::RegistrationParameterScalesEstimator< TMetric > * CreateScalesEstimator ()
 
template<unsigned int VDimension>
itk::SpatialObject< VDimension > * CreateSpatialObjectMask (const Image &mask)
 
template<typename TTransformAdaptorPointer , typename TRegistrationMethod >
std::vector< TTransformAdaptorPointer > CreateTransformParametersAdaptor (TRegistrationMethod *method)
 
template<class TImage >
double EvaluateInternal (const Image &fixed, const Image &moving)
 
template<class TImage >
Transform ExecuteInternal (const Image &fixed, const Image &moving)
 
virtual void OnActiveProcessDelete () throw ()
 
virtual void PreUpdate (itk::ProcessObject *p)
 
virtual void RemoveITKObserver (EventCommand &e)
 
template<class TImageType >
void SetupMetric (itk::ImageToImageMetricv4< TImageType, TImageType, TImageType, double, itk::DefaultImageToImageMetricTraitsv4< TImageType, TImageType, TImageType, double > > *, const TImageType *, const TImageType *)
 
- Protected Member Functions inherited from itk::simple::ProcessObject
virtual itk::ProcessObjectGetActiveProcess ()
 
virtual void onCommandDelete (const itk::simple::Command *cmd) throw ()
 
- Protected Member Functions inherited from itk::simple::NonCopyable
 NonCopyable ()
 

Private Types

typedef double(ImageRegistrationMethod::* EvaluateMemberFunctionType) (const Image &fixed, const Image &moving)
 
typedef Transform(ImageRegistrationMethod::* MemberFunctionType) (const Image &fixed, const Image &moving)
 
enum  MetricType {
  ANTSNeighborhoodCorrelation,
  Correlation,
  Demons,
  JointHistogramMutualInformation,
  MeanSquares,
  MattesMutualInformation
}
 
enum  OptimizerScalesType {
  Manual,
  Jacobian,
  IndexShift,
  PhysicalShift
}
 
enum  OptimizerType {
  ConjugateGradientLineSearch,
  RegularStepGradientDescent,
  GradientDescent,
  GradientDescentLineSearch,
  LBFGSB,
  Exhaustive,
  Amoeba,
  Powell,
  OnePlusOneEvolutionary
}
 

Private Attributes

itk::ObjectToObjectOptimizerBaseTemplate< double > * m_ActiveOptimizer
 
nsstd::auto_ptr< detail::MemberFunctionFactory< EvaluateMemberFunctionType > > m_EvaluateMemberFactory
 
Transform m_FixedInitialTransform
 
Transform m_InitialTransform
 
bool m_InitialTransformInPlace
 
InterpolatorEnum m_Interpolator
 
unsigned int m_Iteration
 
nsstd::auto_ptr< detail::MemberFunctionFactory< MemberFunctionType > > m_MemberFactory
 
Image m_MetricFixedMaskImage
 
double m_MetricIntensityDifferenceThreshold
 
Image m_MetricMovingMaskImage
 
unsigned int m_MetricNumberOfHistogramBins
 
unsigned int m_MetricRadius
 
std::vector< double > m_MetricSamplingPercentage
 
unsigned int m_MetricSamplingSeed
 
MetricSamplingStrategyType m_MetricSamplingStrategy
 
MetricType m_MetricType
 
bool m_MetricUseFixedImageGradientFilter
 
bool m_MetricUseMovingImageGradientFilter
 
double m_MetricValue
 
double m_MetricVarianceForJointPDFSmoothing
 
Transform m_MovingInitialTransform
 
double m_OptimizerConvergenceMinimumValue
 
unsigned int m_OptimizerConvergenceWindowSize
 
double m_OptimizerCostFunctionConvergenceFactor
 
double m_OptimizerEpsilon
 
EstimateLearningRateType m_OptimizerEstimateLearningRate
 
double m_OptimizerFunctionConvergenceTolerance
 
double m_OptimizerGradientConvergenceTolerance
 
double m_OptimizerGradientMagnitudeTolerance
 
double m_OptimizerGrowthFactor
 
double m_OptimizerInitialRadius
 
double m_OptimizerLearningRate
 
double m_OptimizerLineSearchEpsilon
 
double m_OptimizerLineSearchLowerLimit
 
unsigned int m_OptimizerLineSearchMaximumIterations
 
double m_OptimizerLineSearchUpperLimit
 
double m_OptimizerLowerBound
 
unsigned int m_OptimizerMaximumLineIterations
 
unsigned int m_OptimizerMaximumNumberOfCorrections
 
unsigned int m_OptimizerMaximumNumberOfFunctionEvaluations
 
double m_OptimizerMaximumStepSizeInPhysicalUnits
 
double m_OptimizerMinimumStepLength
 
unsigned int m_OptimizerNumberOfIterations
 
std::vector< unsigned int > m_OptimizerNumberOfSteps
 
double m_OptimizerParametersConvergenceTolerance
 
double m_OptimizerRelaxationFactor
 
std::vector< double > m_OptimizerScales
 
unsigned int m_OptimizerScalesCentralRegionRadius
 
double m_OptimizerScalesSmallParameterVariation
 
OptimizerScalesType m_OptimizerScalesType
 
unsigned int m_OptimizerSeed
 
double m_OptimizerShrinkFactor
 
double m_OptimizerSimplexDelta
 
double m_OptimizerStepLength
 
double m_OptimizerStepTolerance
 
bool m_OptimizerTrace
 
OptimizerType m_OptimizerType
 
double m_OptimizerUpperBound
 
double m_OptimizerValueTolerance
 
std::vector< double > m_OptimizerWeights
 
bool m_OptimizerWithRestarts
 
nsstd::function< unsigned int()> m_pfGetCurrentLevel
 
nsstd::function< double()> m_pfGetMetricValue
 
nsstd::function< double()> m_pfGetOptimizerConvergenceValue
 
nsstd::function< unsigned int()> m_pfGetOptimizerIteration
 
nsstd::function< double()> m_pfGetOptimizerLearningRate
 
nsstd::function< std::vector< double >)> m_pfGetOptimizerPosition
 
nsstd::function< std::vector< double >)> m_pfGetOptimizerScales
 
nsstd::function< std::string()> m_pfGetOptimizerStopConditionDescription
 
nsstd::function< void(itk::TransformBase *outTransform)> m_pfUpdateWithBestValue
 
std::vector< unsigned int > m_ShrinkFactorsPerLevel
 
bool m_SmoothingSigmasAreSpecifiedInPhysicalUnits
 
std::vector< double > m_SmoothingSigmasPerLevel
 
std::string m_StopConditionDescription
 
std::vector< double > m_VirtualDomainDirection
 
std::vector< double > m_VirtualDomainOrigin
 
std::vector< uint32_tm_VirtualDomainSize
 
std::vector< double > m_VirtualDomainSpacing
 

Friends

struct detail::MemberFunctionAddressor< MemberFunctionType >
 

Additional Inherited Members

- Static Public Member Functions inherited from itk::simple::ProcessObject
static bool GetGlobalDefaultDebug ()
 
static void GlobalDefaultDebugOff ()
 
static void GlobalDefaultDebugOn ()
 
static void SetGlobalDefaultDebug (bool debugFlag)
 
static void GlobalWarningDisplayOn ()
 
static void GlobalWarningDisplayOff ()
 
static void SetGlobalWarningDisplay (bool flag)
 
static bool GetGlobalWarningDisplay ()
 
static void SetGlobalDefaultNumberOfThreads (unsigned int n)
 
static unsigned int GetGlobalDefaultNumberOfThreads ()
 
static double GetGlobalDefaultCoordinateTolerance ()
 Access the global tolerance to determine congruent spaces. More...
 
static void SetGlobalDefaultCoordinateTolerance (double)
 Access the global tolerance to determine congruent spaces. More...
 
static double GetGlobalDefaultDirectionTolerance ()
 Access the global tolerance to determine congruent spaces. More...
 
static void SetGlobalDefaultDirectionTolerance (double)
 Access the global tolerance to determine congruent spaces. More...
 
- Static Protected Member Functions inherited from itk::simple::ProcessObject
template<class TImageType >
static TImageType::ConstPointer CastImageToITK (const Image &img)
 
template<class TImageType >
static Image CastITKToImage (TImageType *img)
 
template<class TPixelType , unsigned int VImageDimension, unsigned int VLength, template< typename, unsigned int > class TVector>
static Image CastITKToImage (itk::Image< TVector< TPixelType, VLength >, VImageDimension > *img)
 
static const itk::EventObjectGetITKEventObject (EventEnum e)
 
template<typename T >
static std::ostream & ToStringHelper (std::ostream &os, const T &v)
 
static std::ostream & ToStringHelper (std::ostream &os, const char &v)
 
static std::ostream & ToStringHelper (std::ostream &os, const signed char &v)
 
static std::ostream & ToStringHelper (std::ostream &os, const unsigned char &v)
 

Detailed Description

An interface method to the modular ITKv4 registration framework.

This interface method class encapsulates typical registration usage by incorporating all the necessary elements for performing a simple image registration between two images. This method also allows for multistage registration whereby each stage is characterized by possibly different transforms and different image metrics. For example, many users will want to perform a linear registration followed by deformable registration where both stages are performed in multiple levels. Each level can be characterized by:

Multiple stages are handled by linking multiple instantiations of this class where the output transform is added to the optional composite transform input.

See also
itk::ImageRegistrationMethodv4
itk::ImageToImageMetricv4
itk::ObjectToObjectOptimizerBaseTemplate
Examples:
ImageRegistrationMethod1/ImageRegistrationMethod1.cxx, ImageRegistrationMethod2/ImageRegistrationMethod2.cxx, ImageRegistrationMethodBSpline1/ImageRegistrationMethodBSpline1.cxx, and ImageRegistrationMethodDisplacement1/ImageRegistrationMethodDisplacement1.cxx.

Definition at line 88 of file sitkImageRegistrationMethod.h.

Member Typedef Documentation

typedef double(ImageRegistrationMethod::* itk::simple::ImageRegistrationMethod::EvaluateMemberFunctionType) (const Image &fixed, const Image &moving)
private

Definition at line 627 of file sitkImageRegistrationMethod.h.

typedef Transform(ImageRegistrationMethod::* itk::simple::ImageRegistrationMethod::MemberFunctionType) (const Image &fixed, const Image &moving)
private

Definition at line 626 of file sitkImageRegistrationMethod.h.

Definition at line 93 of file sitkImageRegistrationMethod.h.

Definition at line 94 of file sitkImageRegistrationMethod.h.

Member Enumeration Documentation

Enumerator
Never 

Never run estimation, use provided value.

Once 

Estimate learning once each level, ignore provided values.

EachIteration 

Estimate learning rate at each iteration.

Examples:
ImageRegistrationMethodDisplacement1/ImageRegistrationMethodDisplacement1.cxx.

Definition at line 234 of file sitkImageRegistrationMethod.h.

Enumerator
NONE 
REGULAR 
RANDOM 

Definition at line 443 of file sitkImageRegistrationMethod.h.

Enumerator
ANTSNeighborhoodCorrelation 
Correlation 
Demons 
JointHistogramMutualInformation 
MeanSquares 
MattesMutualInformation 

Definition at line 704 of file sitkImageRegistrationMethod.h.

Enumerator
Manual 
Jacobian 
IndexShift 
PhysicalShift 

Definition at line 692 of file sitkImageRegistrationMethod.h.

Enumerator
ConjugateGradientLineSearch 
RegularStepGradientDescent 
GradientDescent 
GradientDescentLineSearch 
LBFGSB 
Exhaustive 
Amoeba 
Powell 
OnePlusOneEvolutionary 

Definition at line 644 of file sitkImageRegistrationMethod.h.

Constructor & Destructor Documentation

itk::simple::ImageRegistrationMethod::ImageRegistrationMethod ( )
virtual itk::simple::ImageRegistrationMethod::~ImageRegistrationMethod ( )
virtual

Member Function Documentation

virtual unsigned long itk::simple::ImageRegistrationMethod::AddITKObserver ( const itk::EventObject ,
itk::Command  
)
protectedvirtual

Reimplemented from itk::simple::ProcessObject.

template<class TImageType >
itk::ImageToImageMetricv4<TImageType, TImageType, TImageType, double, itk::DefaultImageToImageMetricTraitsv4< TImageType, TImageType, TImageType, double > >* itk::simple::ImageRegistrationMethod::CreateMetric ( )
protected
itk::ObjectToObjectOptimizerBaseTemplate<double>* itk::simple::ImageRegistrationMethod::CreateOptimizer ( unsigned int  numberOfTransformParameters)
protected
template<typename TMetric >
itk::RegistrationParameterScalesEstimator< TMetric >* itk::simple::ImageRegistrationMethod::CreateScalesEstimator ( )
protected
template<unsigned int VDimension>
itk::SpatialObject<VDimension>* itk::simple::ImageRegistrationMethod::CreateSpatialObjectMask ( const Image mask)
protected
template<typename TTransformAdaptorPointer , typename TRegistrationMethod >
std::vector< TTransformAdaptorPointer > itk::simple::ImageRegistrationMethod::CreateTransformParametersAdaptor ( TRegistrationMethod *  method)
protected
template<class TImage >
double itk::simple::ImageRegistrationMethod::EvaluateInternal ( const Image fixed,
const Image moving 
)
protected
Transform itk::simple::ImageRegistrationMethod::Execute ( const Image fixed,
const Image moving 
)
template<class TImage >
Transform itk::simple::ImageRegistrationMethod::ExecuteInternal ( const Image fixed,
const Image moving 
)
protected
unsigned int itk::simple::ImageRegistrationMethod::GetCurrentLevel ( ) const
Transform itk::simple::ImageRegistrationMethod::GetFixedInitialTransform ( ) const
inline

Set transform mapping to the fixed domain.

This transform is used to map from the virtual domain to the fixed image domain.

By default this transform is an identity, and not used.

See also
itk::ImageRegistrationMethodv4::SetFixedInitialTransform

Definition at line 177 of file sitkImageRegistrationMethod.h.

Transform itk::simple::ImageRegistrationMethod::GetInitialTransform ( )
inline

Set the initial transform and parameters to optimize.

This transform is applied before the MovingInitialTransform, to map from the virtual image domain to the moving image domain.

If the inPlace flag is explicitly false, then the ITK registration will internally make a copy, and the transform will not be accessible during registration. Otherwise, the accessible InitialTransform value will be the same object used during registration, and will have a modified value upon completion.

See also
itk::ImageRegistrationMethodv4::SetInitialTransform

Definition at line 140 of file sitkImageRegistrationMethod.h.

bool itk::simple::ImageRegistrationMethod::GetInitialTransformInPlace ( ) const
inline

Set the initial transform and parameters to optimize.

This transform is applied before the MovingInitialTransform, to map from the virtual image domain to the moving image domain.

If the inPlace flag is explicitly false, then the ITK registration will internally make a copy, and the transform will not be accessible during registration. Otherwise, the accessible InitialTransform value will be the same object used during registration, and will have a modified value upon completion.

See also
itk::ImageRegistrationMethodv4::SetInitialTransform

Definition at line 142 of file sitkImageRegistrationMethod.h.

InterpolatorEnum itk::simple::ImageRegistrationMethod::GetInterpolator ( )
inline

Set and get the interpolator to use.

Definition at line 113 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::GetMetricValue ( ) const
Transform itk::simple::ImageRegistrationMethod::GetMovingInitialTransform ( ) const
inline

Set a fixed transform component towards moving domain.

The InitialTransform is added to this transform to form the composite transform which maps from the virtual domain to the moving image's domain. The parameters of this transform are not optimized. This is an advanced option used when the output transformed with be composed into a composite transform.

By default this transform is an identity, and not used.

See also
itk::ImageRegistrationMethodv4::SetMovingInitialTransform

Definition at line 161 of file sitkImageRegistrationMethod.h.

std::string itk::simple::ImageRegistrationMethod::GetName ( ) const
inlinevirtual

return user readable name for the filter

Implements itk::simple::ProcessObject.

Definition at line 99 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::GetOptimizerConvergenceValue ( ) const
unsigned int itk::simple::ImageRegistrationMethod::GetOptimizerIteration ( ) const

Active measurements which can be obtained during call backs.

This is a measurement. Its value is updated in the Execute methods, so the value will only be valid after an execution.

Examples:
ImageRegistrationMethod1/ImageRegistrationMethod1.cxx, ImageRegistrationMethod2/ImageRegistrationMethod2.cxx, ImageRegistrationMethodBSpline1/ImageRegistrationMethodBSpline1.cxx, and ImageRegistrationMethodDisplacement1/ImageRegistrationMethodDisplacement1.cxx.
double itk::simple::ImageRegistrationMethod::GetOptimizerLearningRate ( ) const
std::vector<double> itk::simple::ImageRegistrationMethod::GetOptimizerPosition ( ) const
std::vector<double> itk::simple::ImageRegistrationMethod::GetOptimizerScales ( ) const

Get the OptimizerScales.

If the scales are explicitly set then this method returns those values. If an estimator is used then this is an active measurement returning the scales estimated by the estimator and is only available during execution.

std::string itk::simple::ImageRegistrationMethod::GetOptimizerStopConditionDescription ( ) const
std::vector<double> itk::simple::ImageRegistrationMethod::GetOptimizerWeights ( ) const

A per parameter weighting array for the optimizer.

Allows setting of a per-local-parameter weighting array. If unset, the weights are treated as identity. Weights are multiplied by the gradient at the same time scaling is applied. Weights are similar to the scales but not estimated, and may be used, for example, to easily mask out a particular parameter during optimization to hold it constant. Or they may be used to apply another kind of prior knowledge.

double itk::simple::ImageRegistrationMethod::MetricEvaluate ( const Image fixed,
const Image moving 
)

Get the value of the metric given the state of the method.

Passing a fixed and moving image, this method constructs and configures a metric object to obtain the value. This will take into consideration the current transforms, metric, interpolator, and image masks. It does not take into consideration the sampling strategy, smoothing sigmas, or the shrink factors.

Self& itk::simple::ImageRegistrationMethod::MetricUseFixedImageGradientFilterOff ( )
inline

Enable image gradient computation by a filter.

By default the image gradient is computed by itk::GradientRecursiveGaussianImageFiter. If disabled then a central difference function with be computed as needed.

See also
itk::ImageToImageMetricv4::SetUseFixedImageGradientFilter
Examples:
ImageRegistrationMethodDisplacement1/ImageRegistrationMethodDisplacement1.cxx.

Definition at line 466 of file sitkImageRegistrationMethod.h.

Self& itk::simple::ImageRegistrationMethod::MetricUseFixedImageGradientFilterOn ( )
inline

Enable image gradient computation by a filter.

By default the image gradient is computed by itk::GradientRecursiveGaussianImageFiter. If disabled then a central difference function with be computed as needed.

See also
itk::ImageToImageMetricv4::SetUseFixedImageGradientFilter

Definition at line 465 of file sitkImageRegistrationMethod.h.

Self& itk::simple::ImageRegistrationMethod::MetricUseMovingImageGradientFilterOff ( )
inline

Enable image gradient computation by a filter.

By default the image gradient is computed by itk::GradientRecursiveGaussianImageFiter. If disabled then a central difference function with be computed as needed.

See also
itk::ImageToImageMetricv4::SetUseMovingImageGradientFilter

Definition at line 481 of file sitkImageRegistrationMethod.h.

Self& itk::simple::ImageRegistrationMethod::MetricUseMovingImageGradientFilterOn ( )
inline

Enable image gradient computation by a filter.

By default the image gradient is computed by itk::GradientRecursiveGaussianImageFiter. If disabled then a central difference function with be computed as needed.

See also
itk::ImageToImageMetricv4::SetUseMovingImageGradientFilter

Definition at line 480 of file sitkImageRegistrationMethod.h.

virtual void itk::simple::ImageRegistrationMethod::OnActiveProcessDelete ( )
throw (
)
protectedvirtual

Reimplemented from itk::simple::ProcessObject.

virtual void itk::simple::ImageRegistrationMethod::PreUpdate ( itk::ProcessObject p)
protectedvirtual

Reimplemented from itk::simple::ProcessObject.

virtual void itk::simple::ImageRegistrationMethod::RemoveITKObserver ( EventCommand e)
protectedvirtual

Reimplemented from itk::simple::ProcessObject.

Self& itk::simple::ImageRegistrationMethod::SetFixedInitialTransform ( const Transform transform)
inline

Set transform mapping to the fixed domain.

This transform is used to map from the virtual domain to the fixed image domain.

By default this transform is an identity, and not used.

See also
itk::ImageRegistrationMethodv4::SetFixedInitialTransform

Definition at line 175 of file sitkImageRegistrationMethod.h.

Self& itk::simple::ImageRegistrationMethod::SetInitialTransform ( const Transform transform)

Set the initial transform and parameters to optimize.

This transform is applied before the MovingInitialTransform, to map from the virtual image domain to the moving image domain.

If the inPlace flag is explicitly false, then the ITK registration will internally make a copy, and the transform will not be accessible during registration. Otherwise, the accessible InitialTransform value will be the same object used during registration, and will have a modified value upon completion.

See also
itk::ImageRegistrationMethodv4::SetInitialTransform
Examples:
ImageRegistrationMethod1/ImageRegistrationMethod1.cxx, ImageRegistrationMethod2/ImageRegistrationMethod2.cxx, ImageRegistrationMethodBSpline1/ImageRegistrationMethodBSpline1.cxx, and ImageRegistrationMethodDisplacement1/ImageRegistrationMethodDisplacement1.cxx.
Self& itk::simple::ImageRegistrationMethod::SetInitialTransform ( Transform transform,
bool  inPlace = true 
)

Set the initial transform and parameters to optimize.

This transform is applied before the MovingInitialTransform, to map from the virtual image domain to the moving image domain.

If the inPlace flag is explicitly false, then the ITK registration will internally make a copy, and the transform will not be accessible during registration. Otherwise, the accessible InitialTransform value will be the same object used during registration, and will have a modified value upon completion.

See also
itk::ImageRegistrationMethodv4::SetInitialTransform
Self& itk::simple::ImageRegistrationMethod::SetInterpolator ( InterpolatorEnum  Interpolator)
inline
Self& itk::simple::ImageRegistrationMethod::SetMetricAsANTSNeighborhoodCorrelation ( unsigned int  radius)

Use normalized cross correlation using a small neighborhood for each voxel between two images, with speed optimizations for dense registration.

See also
itk::ANTSNeighborhoodCorrelationImageToImageMetricv4
Examples:
ImageRegistrationMethodDisplacement1/ImageRegistrationMethodDisplacement1.cxx.
Self& itk::simple::ImageRegistrationMethod::SetMetricAsCorrelation ( )

Use negative normalized cross correlation image metric.

See also
itk::CorrelationImageToImageMetricv4
Examples:
ImageRegistrationMethodBSpline1/ImageRegistrationMethodBSpline1.cxx.
Self& itk::simple::ImageRegistrationMethod::SetMetricAsDemons ( double  intensityDifferenceThreshold = 0.001)

Use demons image metric.

See also
itk::DemonsImageToImageMetricv4
Self& itk::simple::ImageRegistrationMethod::SetMetricAsJointHistogramMutualInformation ( unsigned int  numberOfHistogramBins = 20,
double  varianceForJointPDFSmoothing = 1.5 
)
Self& itk::simple::ImageRegistrationMethod::SetMetricAsMattesMutualInformation ( unsigned int  numberOfHistogramBins = 50)

Use the mutual information between two images to be registered using the method of Mattes et al.

See also
itk::MattesMutualInformationImageToImageMetricv4
Self& itk::simple::ImageRegistrationMethod::SetMetricAsMeanSquares ( )

Use negative means squares image metric.

See also
itk::MeanSquaresImageToImageMetricv4
Examples:
ImageRegistrationMethod1/ImageRegistrationMethod1.cxx.
Self& itk::simple::ImageRegistrationMethod::SetMetricFixedMask ( const Image binaryMask)

Set an image mask in order to restrict the sampled points for the metric.

The image is expected to be in the same physical space as the FixedImage, and if the pixel type is not UInt8 than the image will base cast.

See also
itk::ImageToImageMetricv4::SetFixedImageMask
Self& itk::simple::ImageRegistrationMethod::SetMetricMovingMask ( const Image binaryMask)

Set an image mask in order to restrict the sampled points for the metric in the moving image space.

The image is expected to be in the same physical space as the MovingImage, and if the pixel type is not UInt8 than the image will base cast.

See also
itk::ImageToImageMetricv4::SetMovingImageMask
Self& itk::simple::ImageRegistrationMethod::SetMetricSamplingPercentage ( double  percentage,
unsigned int  seed = sitkWallClock 
)

Set percentage of pixels sampled for metric evaluation.

The seed parameter is used to seed the pseudo-random number generator used in generating the sampling set of points. If the seed parameter is 0, then the wall clock is used, otherwise the fixed seed is used for reproducible behavior.

See also
itk::ImageRegistrationMethodv4::SetMetricSamplingPercentage
Self& itk::simple::ImageRegistrationMethod::SetMetricSamplingPercentagePerLevel ( const std::vector< double > &  percentage,
unsigned int  seed = sitkWallClock 
)

Set percentage of pixels sampled for metric evaluation.

The seed parameter is used to seed the pseudo-random number generator used in generating the sampling set of points. If the seed parameter is 0, then the wall clock is used, otherwise the fixed seed is used for reproducible behavior.

See also
itk::ImageRegistrationMethodv4::SetMetricSamplingPercentage
Self& itk::simple::ImageRegistrationMethod::SetMetricSamplingStrategy ( MetricSamplingStrategyType  strategy)

Set sampling strategy for sample generation.

See also
itk::ImageRegistrationMethodv4::SetMetricSamplingStrategy
Self& itk::simple::ImageRegistrationMethod::SetMetricUseFixedImageGradientFilter ( bool  )

Enable image gradient computation by a filter.

By default the image gradient is computed by itk::GradientRecursiveGaussianImageFiter. If disabled then a central difference function with be computed as needed.

See also
itk::ImageToImageMetricv4::SetUseFixedImageGradientFilter
Self& itk::simple::ImageRegistrationMethod::SetMetricUseMovingImageGradientFilter ( bool  )

Enable image gradient computation by a filter.

By default the image gradient is computed by itk::GradientRecursiveGaussianImageFiter. If disabled then a central difference function with be computed as needed.

See also
itk::ImageToImageMetricv4::SetUseMovingImageGradientFilter
Self& itk::simple::ImageRegistrationMethod::SetMovingInitialTransform ( const Transform transform)
inline

Set a fixed transform component towards moving domain.

The InitialTransform is added to this transform to form the composite transform which maps from the virtual domain to the moving image's domain. The parameters of this transform are not optimized. This is an advanced option used when the output transformed with be composed into a composite transform.

By default this transform is an identity, and not used.

See also
itk::ImageRegistrationMethodv4::SetMovingInitialTransform
Examples:
ImageRegistrationMethodDisplacement1/ImageRegistrationMethodDisplacement1.cxx.

Definition at line 159 of file sitkImageRegistrationMethod.h.

Self& itk::simple::ImageRegistrationMethod::SetOptimizerAsAmoeba ( double  simplexDelta,
unsigned int  numberOfIterations,
double  parametersConvergenceTolerance = 1e-8,
double  functionConvergenceTolerance = 1e-4,
bool  withRestarts = false 
)

Set optimizer to Nelder-Mead downhill simplex algorithm.

See also
itk::AmoebaOptimizerv4
Self& itk::simple::ImageRegistrationMethod::SetOptimizerAsConjugateGradientLineSearch ( double  learningRate,
unsigned int  numberOfIterations,
double  convergenceMinimumValue = 1e-6,
unsigned int  convergenceWindowSize = 10,
double  lineSearchLowerLimit = 0,
double  lineSearchUpperLimit = 5.0,
double  lineSearchEpsilon = 0.01,
unsigned int  lineSearchMaximumIterations = 20,
EstimateLearningRateType  estimateLearningRate = Once,
double  maximumStepSizeInPhysicalUnits = 0.0 
)

Conjugate gradient descent optimizer with a golden section line search for nonlinear optimization.

See also
itk::ConjugateGradientLineSearchOptimizerv4Template
Self& itk::simple::ImageRegistrationMethod::SetOptimizerAsExhaustive ( const std::vector< unsigned int > &  numberOfSteps,
double  stepLength = 1.0 
)

Set the optimizer to sample the metric at regular steps.

At each iteration the GetOptimizerIteration, can be used to index into the sampling grid along with the GetCurrentMetricValue.

The resulting transform and value at the end of execution is the best location.

The OptimizerScales can be used to perform anisotropic sampling.

Note
This optimizer is not suitable for use in conjunction with the multiple scales.
See also
itk::ExhaustiveOptimizerv4
Self& itk::simple::ImageRegistrationMethod::SetOptimizerAsGradientDescent ( double  learningRate,
unsigned int  numberOfIterations,
double  convergenceMinimumValue = 1e-6,
unsigned int  convergenceWindowSize = 10,
EstimateLearningRateType  estimateLearningRate = Once,
double  maximumStepSizeInPhysicalUnits = 0.0 
)
Self& itk::simple::ImageRegistrationMethod::SetOptimizerAsGradientDescentLineSearch ( double  learningRate,
unsigned int  numberOfIterations,
double  convergenceMinimumValue = 1e-6,
unsigned int  convergenceWindowSize = 10,
double  lineSearchLowerLimit = 0,
double  lineSearchUpperLimit = 5.0,
double  lineSearchEpsilon = 0.01,
unsigned int  lineSearchMaximumIterations = 20,
EstimateLearningRateType  estimateLearningRate = Once,
double  maximumStepSizeInPhysicalUnits = 0.0 
)

Gradient descent optimizer with a golden section line search.

See also
itk::GradientDescentLineSearchOptimizerv4Template
Examples:
ImageRegistrationMethod2/ImageRegistrationMethod2.cxx.
Self& itk::simple::ImageRegistrationMethod::SetOptimizerAsLBFGSB ( double  gradientConvergenceTolerance = 1e-5,
unsigned int  numberOfIterations = 500,
unsigned int  maximumNumberOfCorrections = 5,
unsigned int  maximumNumberOfFunctionEvaluations = 2000,
double  costFunctionConvergenceFactor = 1e+7,
double  lowerBound = std::numeric_limits< double >::min(),
double  upperBound = std::numeric_limits< double >::max(),
bool  trace = false 
)

Limited memory Broyden Fletcher Goldfarb Shannon minimization with simple bounds.

The default parameters utilize LBFGSB in unbounded mode.

See also
itk::LBFGSBOptimizerv4
Examples:
ImageRegistrationMethodBSpline1/ImageRegistrationMethodBSpline1.cxx.
Self& itk::simple::ImageRegistrationMethod::SetOptimizerAsOnePlusOneEvolutionary ( unsigned int  numberOfIterations = 100,
double  epsilon = 1.5e-4,
double  initialRadius = 1.01,
double  growthFactor = -1.0,
double  shrinkFactor = -1.0,
unsigned int  seed = sitkWallClock 
)

1+1 evolutionary optimizer strategy.

The seed parameter is used to seed the pseudo-random number generator. If the seed parameter is 0, then the wall clock is used to seed, otherwise the fixed seed is used for reproducible behavior.

See also
itk::OnePlusOneEvolutionaryOptimizerv4
Self& itk::simple::ImageRegistrationMethod::SetOptimizerAsPowell ( unsigned int  numberOfIterations = 100,
unsigned int  maximumLineIterations = 100,
double  stepLength = 1,
double  stepTolerance = 1e-6,
double  valueTolerance = 1e-6 
)

Powell optimization using Brent line search.

See also
itk::PowellOptimizerv4
Self& itk::simple::ImageRegistrationMethod::SetOptimizerAsRegularStepGradientDescent ( double  learningRate,
double  minStep,
unsigned int  numberOfIterations,
double  relaxationFactor = 0.5,
double  gradientMagnitudeTolerance = 1e-4,
EstimateLearningRateType  estimateLearningRate = Never,
double  maximumStepSizeInPhysicalUnits = 0.0 
)
Self& itk::simple::ImageRegistrationMethod::SetOptimizerScales ( const std::vector< double > &  scales)

Manually set per parameter weighting for the transform parameters.

Self& itk::simple::ImageRegistrationMethod::SetOptimizerScalesFromIndexShift ( unsigned int  centralRegionRadius = 5,
double  smallParameterVariation = 0.01 
)

Estimate scales from maximum voxel shift in index space cause by parameter change.

See also
itk::RegistrationParameterScalesFromIndexShift
Self& itk::simple::ImageRegistrationMethod::SetOptimizerScalesFromJacobian ( unsigned int  centralRegionRadius = 5)

Estimate scales from Jacobian norms.

This scales estimator works well with versor based transforms.

See also
itk::RegistrationParameterScalesFromJacobian
Self& itk::simple::ImageRegistrationMethod::SetOptimizerScalesFromPhysicalShift ( unsigned int  centralRegionRadius = 5,
double  smallParameterVariation = 0.01 
)

Estimating scales of transform parameters a step sizes, from the maximum voxel shift in physical space caused by a parameter change.

See also
itk::RegistrationParameterScalesFromPhysicalShift
Examples:
ImageRegistrationMethodDisplacement1/ImageRegistrationMethodDisplacement1.cxx.
Self& itk::simple::ImageRegistrationMethod::SetOptimizerWeights ( const std::vector< double > &  weights)

A per parameter weighting array for the optimizer.

Allows setting of a per-local-parameter weighting array. If unset, the weights are treated as identity. Weights are multiplied by the gradient at the same time scaling is applied. Weights are similar to the scales but not estimated, and may be used, for example, to easily mask out a particular parameter during optimization to hold it constant. Or they may be used to apply another kind of prior knowledge.

Self& itk::simple::ImageRegistrationMethod::SetShrinkFactorsPerLevel ( const std::vector< unsigned int > &  shrinkFactors)

Set the shrink factors for each level where each level has the same shrink factor for each dimension.

See also
itk::ImageRegistrationMethodv4::SetShrinkFactorsPerLevel
Examples:
ImageRegistrationMethodDisplacement1/ImageRegistrationMethodDisplacement1.cxx.
Self& itk::simple::ImageRegistrationMethod::SetSmoothingSigmasAreSpecifiedInPhysicalUnits ( bool  arg)

Enable the smoothing sigmas for each level in physical units (default) or in terms of voxels.

See also
itk::ImageRegistrationMethodv4::SetSmoothingSigmasAreSpecifiedInPhysicalUnits
Self& itk::simple::ImageRegistrationMethod::SetSmoothingSigmasPerLevel ( const std::vector< double > &  smoothingSigmas)
template<class TImageType >
void itk::simple::ImageRegistrationMethod::SetupMetric ( itk::ImageToImageMetricv4< TImageType, TImageType, TImageType, double, itk::DefaultImageToImageMetricTraitsv4< TImageType, TImageType, TImageType, double > > *  ,
const TImageType *  ,
const TImageType *   
)
protected
Self& itk::simple::ImageRegistrationMethod::SetVirtualDomain ( const std::vector< uint32_t > &  virtualSize,
const std::vector< double > &  virtualOrigin,
const std::vector< double > &  virtualSpacing,
const std::vector< double > &  virtualDirection 
)

Set the virtual domain used for sampling.

Self& itk::simple::ImageRegistrationMethod::SetVirtualDomainFromImage ( const Image virtualImage)

Set the virtual domain used for sampling.

Self& itk::simple::ImageRegistrationMethod::SmoothingSigmasAreSpecifiedInPhysicalUnitsOff ( )
inline

Enable the smoothing sigmas for each level in physical units (default) or in terms of voxels.

See also
itk::ImageRegistrationMethodv4::SetSmoothingSigmasAreSpecifiedInPhysicalUnits

Definition at line 507 of file sitkImageRegistrationMethod.h.

Self& itk::simple::ImageRegistrationMethod::SmoothingSigmasAreSpecifiedInPhysicalUnitsOn ( )
inline

Enable the smoothing sigmas for each level in physical units (default) or in terms of voxels.

See also
itk::ImageRegistrationMethodv4::SetSmoothingSigmasAreSpecifiedInPhysicalUnits

Definition at line 506 of file sitkImageRegistrationMethod.h.

std::string itk::simple::ImageRegistrationMethod::ToString ( ) const
virtual

Print the information about the object to a string.

If called when the process is being executed ( during a callback ), the ITK Optimizer and Transform objects will be printed.

Reimplemented from itk::simple::ProcessObject.

Friends And Related Function Documentation

Definition at line 628 of file sitkImageRegistrationMethod.h.

Member Data Documentation

itk::ObjectToObjectOptimizerBaseTemplate<double>* itk::simple::ImageRegistrationMethod::m_ActiveOptimizer
private

Definition at line 735 of file sitkImageRegistrationMethod.h.

nsstd::auto_ptr<detail::MemberFunctionFactory<EvaluateMemberFunctionType> > itk::simple::ImageRegistrationMethod::m_EvaluateMemberFactory
private

Definition at line 630 of file sitkImageRegistrationMethod.h.

Transform itk::simple::ImageRegistrationMethod::m_FixedInitialTransform
private

Definition at line 636 of file sitkImageRegistrationMethod.h.

Transform itk::simple::ImageRegistrationMethod::m_InitialTransform
private

Definition at line 633 of file sitkImageRegistrationMethod.h.

bool itk::simple::ImageRegistrationMethod::m_InitialTransformInPlace
private

Definition at line 634 of file sitkImageRegistrationMethod.h.

InterpolatorEnum itk::simple::ImageRegistrationMethod::m_Interpolator
private

Definition at line 632 of file sitkImageRegistrationMethod.h.

unsigned int itk::simple::ImageRegistrationMethod::m_Iteration
private

Definition at line 733 of file sitkImageRegistrationMethod.h.

nsstd::auto_ptr<detail::MemberFunctionFactory<MemberFunctionType> > itk::simple::ImageRegistrationMethod::m_MemberFactory
private

Definition at line 629 of file sitkImageRegistrationMethod.h.

Image itk::simple::ImageRegistrationMethod::m_MetricFixedMaskImage
private

Definition at line 717 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_MetricIntensityDifferenceThreshold
private

Definition at line 713 of file sitkImageRegistrationMethod.h.

Image itk::simple::ImageRegistrationMethod::m_MetricMovingMaskImage
private

Definition at line 718 of file sitkImageRegistrationMethod.h.

unsigned int itk::simple::ImageRegistrationMethod::m_MetricNumberOfHistogramBins
private

Definition at line 714 of file sitkImageRegistrationMethod.h.

unsigned int itk::simple::ImageRegistrationMethod::m_MetricRadius
private

Definition at line 712 of file sitkImageRegistrationMethod.h.

std::vector<double> itk::simple::ImageRegistrationMethod::m_MetricSamplingPercentage
private

Definition at line 720 of file sitkImageRegistrationMethod.h.

unsigned int itk::simple::ImageRegistrationMethod::m_MetricSamplingSeed
private

Definition at line 722 of file sitkImageRegistrationMethod.h.

MetricSamplingStrategyType itk::simple::ImageRegistrationMethod::m_MetricSamplingStrategy
private

Definition at line 721 of file sitkImageRegistrationMethod.h.

MetricType itk::simple::ImageRegistrationMethod::m_MetricType
private

Definition at line 711 of file sitkImageRegistrationMethod.h.

bool itk::simple::ImageRegistrationMethod::m_MetricUseFixedImageGradientFilter
private

Definition at line 724 of file sitkImageRegistrationMethod.h.

bool itk::simple::ImageRegistrationMethod::m_MetricUseMovingImageGradientFilter
private

Definition at line 725 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_MetricValue
private

Definition at line 732 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_MetricVarianceForJointPDFSmoothing
private

Definition at line 715 of file sitkImageRegistrationMethod.h.

Transform itk::simple::ImageRegistrationMethod::m_MovingInitialTransform
private

Definition at line 635 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerConvergenceMinimumValue
private

Definition at line 666 of file sitkImageRegistrationMethod.h.

unsigned int itk::simple::ImageRegistrationMethod::m_OptimizerConvergenceWindowSize
private

Definition at line 667 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerCostFunctionConvergenceFactor
private

Definition at line 671 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerEpsilon
private

Definition at line 684 of file sitkImageRegistrationMethod.h.

EstimateLearningRateType itk::simple::ImageRegistrationMethod::m_OptimizerEstimateLearningRate
private

Definition at line 662 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerFunctionConvergenceTolerance
private

Definition at line 679 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerGradientConvergenceTolerance
private

Definition at line 668 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerGradientMagnitudeTolerance
private

Definition at line 665 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerGrowthFactor
private

Definition at line 686 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerInitialRadius
private

Definition at line 685 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerLearningRate
private

Definition at line 655 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerLineSearchEpsilon
private

Definition at line 660 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerLineSearchLowerLimit
private

Definition at line 658 of file sitkImageRegistrationMethod.h.

unsigned int itk::simple::ImageRegistrationMethod::m_OptimizerLineSearchMaximumIterations
private

Definition at line 661 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerLineSearchUpperLimit
private

Definition at line 659 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerLowerBound
private

Definition at line 672 of file sitkImageRegistrationMethod.h.

unsigned int itk::simple::ImageRegistrationMethod::m_OptimizerMaximumLineIterations
private

Definition at line 681 of file sitkImageRegistrationMethod.h.

unsigned int itk::simple::ImageRegistrationMethod::m_OptimizerMaximumNumberOfCorrections
private

Definition at line 669 of file sitkImageRegistrationMethod.h.

unsigned int itk::simple::ImageRegistrationMethod::m_OptimizerMaximumNumberOfFunctionEvaluations
private

Definition at line 670 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerMaximumStepSizeInPhysicalUnits
private

Definition at line 663 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerMinimumStepLength
private

Definition at line 656 of file sitkImageRegistrationMethod.h.

unsigned int itk::simple::ImageRegistrationMethod::m_OptimizerNumberOfIterations
private

Definition at line 657 of file sitkImageRegistrationMethod.h.

std::vector<unsigned int> itk::simple::ImageRegistrationMethod::m_OptimizerNumberOfSteps
private

Definition at line 675 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerParametersConvergenceTolerance
private

Definition at line 678 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerRelaxationFactor
private

Definition at line 664 of file sitkImageRegistrationMethod.h.

std::vector<double> itk::simple::ImageRegistrationMethod::m_OptimizerScales
private

Definition at line 699 of file sitkImageRegistrationMethod.h.

unsigned int itk::simple::ImageRegistrationMethod::m_OptimizerScalesCentralRegionRadius
private

Definition at line 700 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerScalesSmallParameterVariation
private

Definition at line 701 of file sitkImageRegistrationMethod.h.

OptimizerScalesType itk::simple::ImageRegistrationMethod::m_OptimizerScalesType
private

Definition at line 698 of file sitkImageRegistrationMethod.h.

unsigned int itk::simple::ImageRegistrationMethod::m_OptimizerSeed
private

Definition at line 688 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerShrinkFactor
private

Definition at line 687 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerSimplexDelta
private

Definition at line 677 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerStepLength
private

Definition at line 676 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerStepTolerance
private

Definition at line 682 of file sitkImageRegistrationMethod.h.

bool itk::simple::ImageRegistrationMethod::m_OptimizerTrace
private

Definition at line 674 of file sitkImageRegistrationMethod.h.

OptimizerType itk::simple::ImageRegistrationMethod::m_OptimizerType
private

Definition at line 654 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerUpperBound
private

Definition at line 673 of file sitkImageRegistrationMethod.h.

double itk::simple::ImageRegistrationMethod::m_OptimizerValueTolerance
private

Definition at line 683 of file sitkImageRegistrationMethod.h.

std::vector<double> itk::simple::ImageRegistrationMethod::m_OptimizerWeights
private

Definition at line 690 of file sitkImageRegistrationMethod.h.

bool itk::simple::ImageRegistrationMethod::m_OptimizerWithRestarts
private

Definition at line 680 of file sitkImageRegistrationMethod.h.

nsstd::function<unsigned int()> itk::simple::ImageRegistrationMethod::m_pfGetCurrentLevel
private

Definition at line 610 of file sitkImageRegistrationMethod.h.

nsstd::function<double()> itk::simple::ImageRegistrationMethod::m_pfGetMetricValue
private

Definition at line 605 of file sitkImageRegistrationMethod.h.

nsstd::function<double()> itk::simple::ImageRegistrationMethod::m_pfGetOptimizerConvergenceValue
private

Definition at line 604 of file sitkImageRegistrationMethod.h.

nsstd::function<unsigned int()> itk::simple::ImageRegistrationMethod::m_pfGetOptimizerIteration
private

Definition at line 601 of file sitkImageRegistrationMethod.h.

nsstd::function<double()> itk::simple::ImageRegistrationMethod::m_pfGetOptimizerLearningRate
private

Definition at line 603 of file sitkImageRegistrationMethod.h.

nsstd::function<std::vector<double>)> itk::simple::ImageRegistrationMethod::m_pfGetOptimizerPosition
private

Definition at line 602 of file sitkImageRegistrationMethod.h.

nsstd::function<std::vector<double>)> itk::simple::ImageRegistrationMethod::m_pfGetOptimizerScales
private

Definition at line 606 of file sitkImageRegistrationMethod.h.

nsstd::function<std::string()> itk::simple::ImageRegistrationMethod::m_pfGetOptimizerStopConditionDescription
private

Definition at line 607 of file sitkImageRegistrationMethod.h.

nsstd::function<void (itk::TransformBase *outTransform)> itk::simple::ImageRegistrationMethod::m_pfUpdateWithBestValue
private

Definition at line 612 of file sitkImageRegistrationMethod.h.

std::vector<unsigned int> itk::simple::ImageRegistrationMethod::m_ShrinkFactorsPerLevel
private

Definition at line 727 of file sitkImageRegistrationMethod.h.

bool itk::simple::ImageRegistrationMethod::m_SmoothingSigmasAreSpecifiedInPhysicalUnits
private

Definition at line 729 of file sitkImageRegistrationMethod.h.

std::vector<double> itk::simple::ImageRegistrationMethod::m_SmoothingSigmasPerLevel
private

Definition at line 728 of file sitkImageRegistrationMethod.h.

std::string itk::simple::ImageRegistrationMethod::m_StopConditionDescription
private

Definition at line 731 of file sitkImageRegistrationMethod.h.

std::vector<double> itk::simple::ImageRegistrationMethod::m_VirtualDomainDirection
private

Definition at line 641 of file sitkImageRegistrationMethod.h.

std::vector<double> itk::simple::ImageRegistrationMethod::m_VirtualDomainOrigin
private

Definition at line 639 of file sitkImageRegistrationMethod.h.

std::vector<uint32_t> itk::simple::ImageRegistrationMethod::m_VirtualDomainSize
private

Definition at line 638 of file sitkImageRegistrationMethod.h.

std::vector<double> itk::simple::ImageRegistrationMethod::m_VirtualDomainSpacing
private

Definition at line 640 of file sitkImageRegistrationMethod.h.


The documentation for this class was generated from the following file: