The Wiener deconvolution image filter is designed to restore an image convolved with a blurring kernel while keeping noise enhancement to a minimum.
More...
The Wiener deconvolution image filter is designed to restore an image convolved with a blurring kernel while keeping noise enhancement to a minimum.
The Wiener filter aims to minimize noise enhancement induced by frequencies with low signal-to-noise ratio. The Wiener filter kernel is defined in the frequency domain as \(W(\omega) = H^*(\omega) / (|H(\omega)|^2 + (1 / SNR(\omega)))\) where \(H(\omega)\) is the Fourier transform of the blurring kernel with which the original image was convolved and the signal-to-noise ratio \(SNR(\omega)\) . \(SNR(\omega)\) is defined by \(P_f(\omega) / P_n(\omega)\) where \(P_f(\omega)\) is the power spectral density of the uncorrupted signal and \(P_n(\omega)\) is the power spectral density of the noise. When applied to the input blurred image, this filter produces an estimate \(\hat{f}(x)\) of the true underlying signal \(f(x)\) that minimizes the expected error between \(\hat{f}(x)\) and \(f(x)\) .
This filter requires two inputs, the image to be deconvolved and the blurring kernel. These two inputs can be set using the methods SetInput() and SetKernelImage(), respectively.
The power spectral densities of the signal and noise are typically unavailable for a given problem. In particular, \(P_f(\omega)\) cannot be computed from \(f(x)\) because this unknown signal is precisely the signal that this filter aims to recover. Nevertheless, it is common for the noise to have a power spectral density that is flat or decreasing significantly more slowly than the power spectral density of a typical image as the frequency \(\omega\) increases. Hence, \(P_n(\omega)\) can typically be approximated with a constant, and this filter makes this assumption (see the NoiseVariance member variable). \(P_f(\omega)\) , on the other hand, will vary with input. This filter computes the power spectral density of the input blurred image, subtracts the power spectral density of the noise, and uses the result as the estimate of \(P_f(\omega)\) .
For further information on the Wiener deconvolution filter, please see "Digital Signal Processing" by Kenneth R. Castleman, Prentice Hall, 1995
- Author
- Gaetan Lehmann, Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France
-
Chris Mullins, The University of North Carolina at Chapel Hill
-
Cory Quammen, The University of North Carolina at Chapel Hill
- See also
- itk::simple::WienerDeconvolution for the procedural interface
-
itk::WienerDeconvolutionImageFilter for the Doxygen on the original ITK class.
Definition at line 55 of file sitkWienerDeconvolutionImageFilter.h.
|
static bool | GetGlobalDefaultDebug () |
|
static void | GlobalDefaultDebugOff () |
|
static void | GlobalDefaultDebugOn () |
|
static void | SetGlobalDefaultDebug (bool debugFlag) |
|
static void | GlobalWarningDisplayOn () |
|
static void | GlobalWarningDisplayOff () |
|
static void | SetGlobalWarningDisplay (bool flag) |
|
static bool | GetGlobalWarningDisplay () |
|
static double | GetGlobalDefaultCoordinateTolerance () |
| Access the global tolerance to determine congruent spaces. More...
|
|
static void | SetGlobalDefaultCoordinateTolerance (double) |
| Access the global tolerance to determine congruent spaces. More...
|
|
static double | GetGlobalDefaultDirectionTolerance () |
| Access the global tolerance to determine congruent spaces. More...
|
|
static void | SetGlobalDefaultDirectionTolerance (double) |
| Access the global tolerance to determine congruent spaces. More...
|
|
static bool | SetGlobalDefaultThreader (const std::string &threader) |
| Set/Get the default threader used for process objects. More...
|
|
static std::string | GetGlobalDefaultThreader () |
| Set/Get the default threader used for process objects. More...
|
|
static void | SetGlobalDefaultNumberOfThreads (unsigned int n) |
|
static unsigned int | GetGlobalDefaultNumberOfThreads () |
| Set/Get the default threader used for process objects. More...
|
|
void | CheckImageMatchingDimension (const Image &image1, const Image &image2, const std::string &image2Name) |
|
void | CheckImageMatchingPixelType (const Image &image1, const Image &image2, const std::string &image2Name) |
|
void | CheckImageMatchingSize (const Image &image1, const Image &image2, const std::string &image2Name) |
|
virtual unsigned long | AddITKObserver (const itk::EventObject &, itk::Command *) |
|
virtual itk::ProcessObject * | GetActiveProcess () |
|
virtual void | OnActiveProcessDelete () |
|
virtual void | onCommandDelete (const itk::simple::Command *cmd) noexcept |
|
virtual void | PreUpdate (itk::ProcessObject *p) |
|
virtual void | RemoveITKObserver (EventCommand &e) |
|
| NonCopyable ()=default |
|
| NonCopyable (const NonCopyable &)=delete |
|
NonCopyable & | operator= (const NonCopyable &)=delete |
|
template<class TImageType > |
static void | FixNonZeroIndex (TImageType *img) |
|
template<class TImageType > |
static TImageType::ConstPointer | CastImageToITK (const Image &img) |
|
template<class TPixelType , unsigned int VImageDimension, unsigned int VLength, template< typename, unsigned int > class TVector> |
static Image | CastITKToImage (itk::Image< TVector< TPixelType, VLength >, VImageDimension > *img) |
|
template<unsigned int VImageDimension, unsigned int VLength, template< unsigned int > class TVector> |
static Image | CastITKToImage (itk::Image< TVector< VLength >, VImageDimension > *img) |
|
template<class TImageType > |
static Image | CastITKToImage (TImageType *img) |
|
static const itk::EventObject & | GetITKEventObject (EventEnum e) |
|
template<typename T > |
static std::ostream & | ToStringHelper (std::ostream &os, const T &v) |
|
static std::ostream & | ToStringHelper (std::ostream &os, const char &v) |
|
static std::ostream & | ToStringHelper (std::ostream &os, const signed char &v) |
|
static std::ostream & | ToStringHelper (std::ostream &os, const unsigned char &v) |
|